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Abstract
Due to the components of electronics being developed on substrates, the substrate coupling to
the conduction channel of electronics should be reasonably considered. We propose a
nanographene ribbon coupling with substrates to study the variation in conductivity and
magnetoresistance.

1. Introduction

Based on the requirement for miniaturization in electronics,
nanoelectronics are getting more important. Carbon-
compound-based materials, such as carbon nanotubes (CNT),
have attracted a great deal of attention due to their electronic or
industrial applications [1–3] in the future. A CNT can be made
by rolling a two-dimensional graphite layer into a cylindrical
tube with various axis directions [4]. The simplest structure of
graphite layer is graphene [5], a one-atom-thick material which
has been confirmed to be produced in recent experimental
reports [6, 7]. Graphene has extremely high conductivity with
giant intrinsic carrier mobilities [8]. In addition, experimental
results also indicate that graphene’s conductivity never falls
below a minimum value corresponding to the quantum unit of
conductance [9], and that the carriers can transport ballistically
in graphene over submicron distances [5]. In terms of valence
bonding, the electrical conduction of graphene is established
by means of the neighboring π orbits overlapping, and these
π orbits are perpendicular to the graphene plane [10]. Many
recent proposals attest to the graphene ribbon’s potential for
nanoelectronics [11–13]. However, it has been proven that a
perfect two-dimensional (2D) crystal cannot exist in free space
at finite temperature [14]. Fortunately, this 2D instability can
be reduced in quasi-2D systems, for instance, growing a 2D
material on a perfect surface of bulk material with coupling.

In this study we propose a nanographene ribbon (NGR)
which lies on an insulating substrate with a matching crystal
lattice, having two metallic electrode connections on both
sides. Because the π orbits of the NGR can couple with
the orbits of the substrate, the coupling will influence the
conduction of the NGR performed by the π orbits, subject to

Figure 1. Top view of our hypothetical sample, a zigzag-head NGR,
composed of honeycomb unit cells (two sublattices represented by
black and white sites), with finite width in the y direction and
infinitely long and periodic in the x direction, lies on a substrate (not
shown in this figure) and contacts metallic electrodes (gray color) by
both zigzag heads.

the fact that different substrates produce different coupling to
the NGR. Some efforts in utilizing the substrate coupling to
tailor graphene for applications have been made [15, 16]. In
this paper, for all calculations, the temperature is set at room
temperature, T = 300 K.

This paper is organized as follows. In section 2, we
describe the model and present the derivation of the theory.
In section 3, we present the results of theoretical calculations
with their discussion, and draw a brief conclusion.

2. Description of theory

A zigzag-head NGR, with finite width in the y direction
and infinitely long and periodic in the x direction, lies on
a substrate and contacts metallic electrodes by both zigzag
heads: the top view of a hypothetical sample is depicted in
figure 1. For the periodicity in the x direction, this NGR can
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be considered to be one-dimensional with N point sites along
the width direction. The N point sites follow the relation,
N = 2n� + 2, where n� is the number of honeycomb unit
cells in the width, for instance, n� = 5 and N = 12 in figure 1.
Based on the NGR’s coupling with the substrate, we propose
a hybridization model to simulate the coupling interaction.
After the Fourier transformation for periodic x direction, the
Hamiltonian description is

H =
∑

k,α∈L,R

εk,αc†
k,αck,α + ep

∑

kx

N∑

i=1

d†
i (kx)di(kx)

×
∑

kx

N∑

i=1

ti (kx)(d
†
i (kx)di+1(kx) + h.c.)

+ em

∑

kx

N∑

i=1

a†
i (kx)ai(kx)

+ V
∑

kx

N∑

i

(a†
i (kx)di(kx) + h.c.)

+ VL

∑

kx

∑

k,L

(c†
kL(kx)dL(kx) + h.c.)

+ VR

∑

kx

∑

k,R

(c†
kR(kx)dR(kx) + h.c.), (1)

where c and d represent second quantization operators for
carriers in the metallic electrodes and NGR, respectively; the a
operator represents the carrier in the substrate that couples with
the NGR orbits. The first term of the Hamiltonian represents
the kinetic energy of carriers in the left and right metallic
electrodes. The second term represents the specific orbital
energy level of the NGR, ep. In the tight-binding model,
the third term represents the hopping process in the NGR
via the hopping energy ti(kx), and ti (kx) = t cos(kx a/2), as
i = 1, 3, . . . and ti (kx) = t , as i = 2, 4, . . ., where a is the
lattice constant and kx lies within the Brillouin zone, −π/a �
kx � π/a; the fourth term represents the orbital energy
level of the substrate, em ; the fifth term represents the orbits
hybridizing between the NGR and substrate via V , and the last
two terms represent left and right metallic electrode couplings
with the NGR via VL and VR interactions, respectively. In
our model, two energies em and V are utilized to simulate the
substrate which couples with the NGR. The current formula,
derived from the Keldysh non-equilibrium Green’s function
method [17] with bias Va , is

I = 2e

h̄

∫
dε

2π

∑

kx

[ fL(ε + Va) − fR(ε)]Tr

×
{

�L(ε)�R(ε)

�L(ε) + �R(ε)

}
[Im Gr(kx, ε)], (2)

where �L(R) is the spectral function in the left (right) lead, fL(R)

is the Fermi–Dirac distribution function in the left (right) lead
and Gr is the retarded Green’s function. The hybridization
interaction drives the charge exchange between the orbits of
the NGR and the substrate, which makes the two original
independent orbits, represented by the d and a operators in
the Hamiltonian, hybridize into two new orbits, represented
by the α and β operators. To transfer the Hamiltonian to
new operator bases by a(kx) = cos θα(kx) − sin θβ(kx) and

Figure 2. The two-channel model is employed to simulate the
substrate-coupled nanographene ribbon, where the left and right end
sides are metallic electrodes. The connected lines within the figures
represent the carrier hopping paths and are marked by their hopping
integrals.

d(kx) = sin θα(kx) + cos θβ(kx), we choose a specific θ ,
followed by tan 2θ = 2V/(em − ep), leading to

H =
∑

k,μ∈L,R

εk,μc†
k,μck,μ + Eα

∑

i,kx

α
†
i (kx)αi (kx)

+ Eβ

∑

i,kx

β
†
i (kx)βi (kx) +

(∑

i,kx

ti,αα
†
i (kx)αi+1(kx)

+
∑

i,kx

ti,ββ
†
i (kx)βi+1(kx)

)
+ h.c.

+
(∑

i,kx

ti,⊥α
†
i (kx)βi+1(kx)

+
∑

i,kx

ti,⊥β
†
i (kx)αi+1(kx)

)
+ h.c.

+
(

VL,α

∑

k,kx

c†
k,LαL(kx) + VL,β

∑

k,kx

c†
k,LβL(kx)

)
+ h.c.

+
(

VR,α

∑

k,kx

c†
k,RαR(kx) + VR,β

∑

k,kx

c†
k,RβR(kx)

)
+ h.c..

(3)

The electrical transport in the coupled NGR proceeds as it
does through two conduction channels, α and β , respectively.
Owing to the orbit coupling between conducting graphene and
insulating substrate where both channels have differences in
essence, the new hybridized orbital energy levels for α and β

are Eα = (em + ep −√
(em − ep)2 + 4V 2)/2 and Eβ = (em +

ep + √
(em − ep)2 + 4V 2)/2, respectively; ti,α = ti(kx) sin2 θ

and ti,β = ti (kx) cos2 θ are effective hopping integrals in each
individual channel; ti,⊥ = ti(kx) sin θ cos θ is the crossing
hopping integral between those channels; VL(R)α = VL(R) sin θ

and VL(R)β = VL(R) cos θ are coupling interactions between
the α and β channels and the left (right) electrode. This
two-channel model is depicted in figure 2. We assign index
numbers to each of the α and β operators from 1 to 2N and
redefine them as Ai(i = 1–2N) for convenient calculation.
The new representation of the Hamiltonian in Ai operator is
H = H0 + HI , where

H0 =
∑

k,μ∈L,R

εk,μc†
k,μck,μ +

2N∑

i=1,kx

Ei A†
i (kx)Ai(kx) (4)

and

HI =
2N∑

i=1,kx

(ti,α(kx)A†
i (kx)Ai+1(kx)�(N − 1 − i)

+ ti,β (kx)A†
i (kx)Ai+1(kx)�(i − N − 1)) + h.c.
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+
2N∑

i=1,kx

ti,⊥(kx)(A†
i (kx)Ai+N+1(kx)

+ A†
N+i (kx)Ai+1(kx))�(N − 1 − i) + h.c.

+ VL,1

∑

k,kx

c†
k,1 A1(kx) + VR,N

∑

k,kx

c†
k,N AN (kx) + h.c.

+ VL,N+1

∑

k,kx

c†
k,N+1 AN+1(kx)

+ VR,2N

∑

k,kx

c†
k,2N A2N(kx) + h.c., (5)

with coupling interactions VL,1 = VL,α , VR,N = VR,α ,
VL,N+1 = VL,β and VR,2N = VR,β and � is the step function.
The current formula of equation (2) requires that we include
the calculation for the retarded Green’s function, Gr

i, j (kx, t) =
〈〈Ai (kx); A†

j(kx)〉〉 = −i�(t){[Ai(kx), A†
j (kx)]}, which

constructs the relation with self-energy, 	r, and bare Green’s
function, Gr

0, by Gr = Gr
0 + Gr

0	
rGr. After employing the

equation of motion for the Green’s function, this leads to the
equation

〈〈[Ai , HI ]; A†
j〉〉(kx , E) =

2N∑

p=1

	r
i p(kx, E)Gr

pj(kx , E), (6)

from which the self-energy,
∑r, has 2N × 2N dimensions,

represented by

	r =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

DL − i �1
L

2 t1,α

...

t∗
1,α 0 t2,α

...

t∗
1,α

. . .
. . .

...

. . . 0 t1,α

...

t∗
1,α DR − i �N

R
2

...

· · · · · · · · · · · · · · · · · ·
t∗
1,⊥

...

t∗
1,⊥ t∗

2,⊥
...

t∗
2,⊥ t∗

1,⊥
...

. . .
. . .

...

...

t1,⊥
t1,⊥ t2,⊥

t2,⊥ t1,⊥
. . .

. . .

· · · · · · · · · · · · · · ·
DL − i �N+1

L
2 t1,β

t∗
1,β 0 t2,β

t∗
2,β

. . .
. . .

. . . 0 t1,β

t∗
1,β DR − i �2N

R
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2N×2N

,

(7)

Figure 3. The current-bias profiles for various couplings V , under
the assumption that the energy level of the substrate is constant.

where t1(2),α, t1(2),β and t1(2),⊥ are the hopping integrals in both
individual channels and their crossing as i = 1, 3, . . . (i =
2, 4, . . .); the spectral functions �

j
α = i2π

∑
k,α V ∗

α, j Vα, jδ(ε−
εk,α)( j = 1, N, N + 1, 2N; α = R, L), corresponding to the
density of states (DOS) of electrodes. In the wide band limit for
metallic electrodes, the spectral functions can be approximated
to a constant, and D ≈ −�

π
ln | W/2+E

W/2−E |, where W is the
bandwidth of the electrode [18].

The number of honeycomb unit cells in the width of our
sample, n�, is 5 and the energy parameters of the Hamiltonian
equation (1) used in our calculations in units of eV are ep =
0, VL(R) = 1.0, t = 2.598, and the DOS in the spectral
function,

∑
k,α=L,R δ(ε − εk,α), is approximated as the inverse

of the electrode’s bandwidth, 1
W , where W = 30. The total

current I = Iα + Iβ is calculated by means of employing the
above energy variables for both channels in equation (2).

3. Results and discussion

In our model, two energy parameters, em and V , are used to
simulate the intrinsic property of a substrate coupling to the
NGR, where em is the orbital energy level of the substrate and
V is the orbital hybridization interaction between the substrate
and NGR. If the carrier transfer between the NGR and substrate
is not conducted by means of tunneling, two orbits should be
overlapping within the bandwidth of the NGR. Unequivocally,
if em is closer to ep, the two orbits will hybridize effectively to
each other and the transport along the NGR will be influenced
apparently. This conduction variation by different couplings is
shown in figure 3 with constant em , which is slightly higher
than ep; as the figure shows, at small V (V = 0.5) the
current increases significantly compared with a non-coupling
NGR (V = 0), which implies a carrier contribution from
the substrate surface, i.e. surface charges [15], to the NGR
via coupling. In contrast to the small coupling, at large
V (V = 1.0–1.5) a conducting–insulating transition occurs,
which implies a large hybridization will localize the transport
carriers in the NGR. The experimental results show that the

3
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bandgaps open as the few-layer-thick graphite is deposited on
the substrates and the gap width increases as the thickness of
the graphite decreases. In addition, the mechanism of bandgap
opening is proposed, owing to the Dirac point rehybridization
induced by the substrate coupling [15]. Obviously, this
mechanism is consistent with our results, related to the
bandgap increase corresponding to our conducting–insulating
transition via the coupling increase. Although a bandgap
has been confirmed to exist in the NGR [19, 20], however,
the coupling self-energy between the NGR and the electrodes
in equation (7) and the thermal effect at room temperature
will suppress the intrinsic or extrinsic gap of the graphene
induced from size scale [19, 20] or substrate coupling,
respectively [15]. Therefore, the current is continuous from
zero bias in figure 3. These intrinsic or extrinsic gaps will
become distinct as the thermal excitation is suppressed with
the temperature decreasing. In contrast, as the temperature
is higher than room temperature, the substrate coupling effect
will be reduced.

In particular, at very small V (V = 0.1), a negative
resistance is present at a relatively large bias. Because
we employ the constant DOS approximation to the metallic
electrode, our theory does not support the possibility of
the negative resistance coming from the coupling with the
electrodes. This constant DOS approximation is suitable for
wide band metal, where the band dispersion near the Fermi
energy is linear approximately. Regarding non-constant DOS
cases, the metallic electrode with finite bandwidth in the one-
dimensional approximation of the spectral function becomes
energy-dependent and has the exact solution, �

j
α(ε) =

V ∗
α, j Vα, j

ε−EL(R)

2 +i
√

( W
4 )2−(

ε−EL(R)

2 )2
, where EL(R) is the eigenvalue of the

left (right) end heads of the electrode, which will be shifted
by the applied bias. In this finite bandwidth approximation,
our private calculation reveals that the negative differential
conductance (NDR) occurs under proper interactions and
applied bias. Through the investigation of the band structure
of the coupled NGR, the negative resistance comes from the
current redistribution between Iα and Iβ through bias. Because
of the new orbital energy levels, Eα and Eβ , where Eα is
lower than Eβ , the current attributions from both channels are
not equivalent and the α channel is dominant in conduction,
which can be verified by turning off V , and making the Eα

approach the energy level of the NGR, ep. Due to the Fermi
level being shifted by the bias application, the relative weight
of conduction from each channel will vary. If these Eα and
Eβ are not widely separated (at very small V ), the Fermi level
crosses the relatively high-conductive α bands predominantly
at small bias leading to a normal conduction, namely, the
current increases as the bias increases. In contrast, at large bias,
the predominant band crossing by Fermi level changes to the
less-conductive β channels, consequently resulting in negative
resistance.

In the presence of a magnetic field perpendicular to the
plane of the NGR, B = (0, 0, B), the hopping element of the
Hamiltonian in the tight-binding model needs to be modified
with Peierl’s phase shift [21–23] if the hopping path has a
component which sweeps the magnetic field perpendicularly.

Figure 4. The magnetoresistance is negative at small coupling V and
positive at large V . The unit of magnetic field is tesla.

The Hamiltonian then becomes

H =
∑

i, j

ti, j e
i(k·(ri −r j )+ 2π

�0

∫ j
i A(r)·dr)

=
∑

i, j

t ′
i, j e

ik·(ri −r j ), (8)

where ti, j is the hopping integral and �0 is the unit magnetic
flux. We can choose the position-dependent Landau gauge
A(r) as A(r) = (−By, 0, 0). Obviously, this position-
dependent phase shift will influence the transport property. We
need to modify the Peierl phase shift to hopping integrals, t1,α ,
t1,β and t1,⊥, only because those hopping paths can couple
with the magnetic flux. Thus, the magnetic flux integral is
�i, j = ∫ j

i A(r) · dr , which passes through the area, �i, j =
(yi − y j )a/2, where yn is the distance from the n point to
the right end point and a is the honeycomb lattice constant.
Based on the definition of magnetoresistance (MR), MR =
(R(B) − R(0))/R(0), which is equal to �I/I (B), where
R(B) and I (B) are the resistance and the current at an applied
magnetic field, respectively. The theoretical results reveal the
positive or negative MR corresponds to various V and the
MR turns from negative to positive with the increase of V , as
shown in figure 4. The interaction V of orbital hybridization
in our model actually implies the strength of localization to
carriers. We propose the negative MR, revealing small V in our
model is consistent with the physics which has predicted that
the negative MR of the NGR is attributed to weak localization
(WL) [24, 25], where the suppression and creation of weak
localization in graphene has been studied in some proposals
[26–28]. The increase of V means changing from weak
localization to strong localization and eventually to positive
MR. It is rational to realize in our model that the weak substrate
coupling (V = 0.1 in our case) is equivalent to atomically
sharp scatterers for graphene [27] as a potential perturbation,
where the effective scattering potential is not smooth because
the current-bias behavior, as shown in figure 3, is different
from other V , and it provides the backward scattering to
construct WL; consequently, the applied magnetic field will
destroy the quantum interferences in moving trajectories with

4
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resulting negative MR. In contrast, as V increases, the substrate
coupling will be outside WL because the effective scattering
potential is smooth and the backward scattering is diminished
with resulting positive MR. In addition, the MR represents
almost no variation at large V , because the carrier localization
is significant at very strong orbital hybridization; an even
stronger magnetic field will not change the MR significantly.

To conclude, we propose a model that simulates the
electrical conduction of a substrate-coupled nanographene
ribbon. The coupling between the substrate and the
nanographene ribbon increases the conduction of the
nanographene ribbon when compared with a non-substrate-
coupled nanographene ribbon, especially at small coupling;
eventually, the large coupling suppresses the conduction. The
magnetoresistance of the nanographene is negative at small
coupling and turns out to be positive as the coupling increases.
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